
AD-R193 615 STRONG LAW FOR MIXING SEQUENCE(U) PITTSBURGH UNIV PA 1/1
CENTER FOR NULTIYRRIATE ANALYSIS X CHEN ET RL. DEC 87

,F TR-84-47 AFOSR-TR-9-0461 F4962S-85-C-SS 13
UNLASSIFIED F/G 12/3

U.K.i'/illl



36iii1 2
~ L LA

MICROCOPY RESOLUTION TEST CHARI
JRFAL, TkNnARDIo 963-A

0~".'

N.4~
S



(01 APOSAF .T.. 88-0401

01

*STRONG LAW FOR MIXING SEQUENCE*

Xiru Chen and Yuehua Wu

Center for Multivariate Analysis
University of Pittsburgh

Technical Report No. 87-47

Center for Multivariate Analysis

University of Pittsburgh

DTIC
-.-. 'MAY

SUTION STATZME

A ppro ved4 fo pub ic r lihmo 
A 'k i

Distribution Unlimited



Unclassified
SILCQ, "tC y CLLA%.I. I A IoN ul tgHS IPA L (Whor. . Ja .t.e. .aj

REPORT DOCUMENTATION PAGE . REAo INSTRUCTIONS
40um VT ACCESSION NO. 3. RECIPINT'S CATALOG NUMBER%40 A in,,0 4

4. TITLE len Suble. S TYPEoFr PONT a PERIOD COVoED

Strong law-for mixing.-sequence el" - December 1987
41. PERFORMING 0eOG. REPORT NUMIER

87-47
1- AUTNOR(e) I. CONTRACT OR GRANT NUiBER(a)

Xi,,u Chen and Yuehua Wu F49620-85-C-0008

9, PERFORMING ORGANIZATION NAME AND ADDRESS I0. PROGRAM ELEMENT. PROJECT, TASK"

Center for Multivariate Analysis SAOR UNI N

Fifth Floor Thackeray Hall
University of Pittsburgh, Pittsburgh, PA 15260 6?p(I41&

it. CONTROLLING OFFICE NAME AND ADDRESS iS. REPONT DATE

Air Force Office of Scientific Research December 1987
Department of the Air Force 1i. NUNR OF PAGES
Bolling Air Force Base, DC 20332 13

14. MONITORING AGENCY NAME 6 ADDRESS(i dilferenl from Coirs/llneI Office) IS. SECURITY CLASS. (o thle rpport)

'VC'- Unclassified

C. -. L - -.y'IS&. ,ECLASSIFICATIONONG ADING

I. DISTNIDUTION STATEMENT lot ls.i Report)

Approved for public release; distribution unlimited.

17. DISTRIOiTiION STATEMENT (o. Ie ibetrecl entered in etck 20, il dleereno ram Japaol

I. SUPPLEMENTARY NOTES

It KEY WORDS (C nt/wo an teveree aie il neso..err and Identify by block number)

mixing coefficient; stationary sequence; strong law of large numbers.

20 AD1 RAC I (Cangtue an reverle side It neceeerv and Idetllif by block number)

In-thig not6 we-prsent some theorems on the strong law for the mixing
sequence which is not necessarily stationary, and the mixing coefficient
involving only a pair of variables in the sequence. ,

DO IJAN13 1473 Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dole Entered)

, w *%, %



Unclassified .
SICuCiTY UTASiISICAiAON OF OFTH PAISfU~sm Da. iDeSaell)

S.1 ., . ,' -, .

• ..

4,. r-

0

Unclassified ,
SaCUagITY CLASIFIIICATION

I OP THIS pAOl(hS~ Duel Burne1d .)

e0

W .i- ~ .r~~ ~ 4 ~v .



STRONG LAW FOR MIXING SEQUENCE*

Xiru Chen and Yuehua Wu

Center for Multivariate Analysis
University of Pittsburgh

Technical Report No. 87-47

December 1987

Center for Multivariate Analysis
Fifth Floor Thackeray Hall
University of Pittsburgh
Pittsburgh, PA 15260 D T lCST ICrIL L E CTE D .E

MAY 0 31988..

*|

Research sponsored by the Air Force Office of Scientific Research under
Contract F49620-85-C-0008. The United States Government is authorized
to reproduce and distribute reprints for governmental purposes notwith-standing any copyright notation hereon.

OITRSLmiuON B , _AlkEW

Approved for publc mla2



STRONG LAW FOR MIXING SEQUENCE *

Xiru Chen and Yuehua Wu

ABSTRACT

In this note we present some theorems on the strong law for the mixing

sequence which is not necessarily stationary, and the mixing coefficient

involving only a pair of variables in the sequence.

AMS 1980 Subject Classifications: Primary 60F15.

Key words and phrases: mixing coefficient, stationary sequence, strong law

of large numbers.

Research sponsored by the Air Force Office of Scientific Research under

Contract F49620-85-C-0008. The United States Government is authorized
to reproduce and distribute reprints for governmental purposes notwith-
standing any copyright notation hereon.

I-

, . .. .



jWru A X VAI% WT V4 VLWV NW7i1r

1. INTRODUCTION

In this article we present some results concerning the strong law

of a mixing sequence IXnn > 1). We do not assume that {X n) is stationary,

and we use mixing coefficients involving only a pair of variables X, Y (in

that order): The Rosenblatt mixing coefficient

ca(X,Y) =sup{ IP(XeA, Y eB) -P(X eA)P(Y eB)I: A eB' ,Be B'}

and the Ibragimov mixing coefficient

a(X,Y) =sup{ JP(Y eB I XeA) -P(Y eB) I: AeBS' ,Be8' ,P(X eA)>O0)

where B' is the a-field of all Borel sets in R'.

THEOREM 1. Suppose that {Xn , n -llis a sequence of random variables,

and for some p > 1 the following conditions are satisfied:

i.sup EIX nIp < Co. (1)
n

20. There exists c > 0 such that as ji -j -+ _*Co

a(XiJ P~i-l (ijp(p2-) 1 < p < 2, (2
0( 1i - F2/p-E), p >2.

Then

lim(S n-ES n n=0, a.s. (3)
n nw

Here and in the sequel S =l *11

THEOREM 2. Suppose that IX n, n>l1} is a sequence of random variables,)r

and one of the following conditions are satisfied:

co 2
(I) I var(X )/n < OD, sup E IX I<0

n=l n n n' ~

and 01 12
6(X.,X) ~(i -i) I ii (n) <0 (4) codes

i 3 ~~~n=O *~1 niO
OTIC .S t Special

c(WY

-w ~ - v. IN- - TTED



2

(IT) sup var(Xn) < and there exists c > 0 such that
nI

1 1/2 (i) = 0(n/(log n)l+E); (5)
i=l

(III) (4) holds, X1, X2, ... are identically distributed and EIX1I <

(the existence of variance is not assumed). Then (3) is true.

Remarks:

1. Part (I) of Theorem 2 can be compared with a result of Blum et al

[1], who assumes that {Xn I is a *-mixing sequence instead of (4). Note that

this assumption does not follow from (4). We can easily construct a pair-

wise independent sequence which is not *-mixing.

2. Parts (I) and (II) of Theorem 2 can also be compared with some

results (see Theorem 3.7.2 and Theorem 3.7.4 of Stout [5]) derived from

Serfling [4]. The conditions of these results involve correlation coeffi-

cients between two variables in the sequence.

3. Part (III) of Theorem 2 extends Theorem I of Etemadi [2]. The

assumption that {Xi} is identically distributed can be somewhat relaxed,

for example, it can be replaced by the condition that there exists a random

variable Y such that P(IXnI Lx) < P(Yj x) for all n > 1 and x > 0. We

also mention a related result of Blum et aZ [1] Theorem 1. They assume

that {Xn } is identically distributed, the distribution of X has a moment

generating function in the neighborhood of zero and that {Xn } is *-mixing.

Under these more stronger conditions they prove that P(Sn -ESnI/n>) tends_•

to zero exponentially.

• 0

S'
A,
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2. PROOF OF THE THEOREMS

In deducing our results we shall borrow a trick from Etemadi [2].

The following well-known facts concerning a(X,Y) and a(X,Y) will be used:

Icov(XY)I : 1 O(c(Xy))6/(2+6) (EIXI 2+6 EJY12+6)l1/(2+6), 6 > 0 (6)

cov(X,Y) I < 2( (X,Y)var(X)var(Y))l/2. (7)

For a proof, see Ibragimov and Linnik [3]. Also it is trivially true that

ct(XI C(X), YID(Y)) < a(XY), (XI C(M, Y10D(Y)) < 8(XY) (8)

ct(X-a, Y-b) = cx(X,Y), S(X-a, Y-b) = s(X,Y), (9)

where C and D are Borel sets in R' and a, b are constants.

Proof of Theorem 1. In view of (9), by defining X+ = X I(X > 0),n n n

Xn= n I( <) n > 1, we can assume without ',oss of generality that Xr > 0,

n >.l Define

Y n = i(Xn -EX n)I (IXn EXI n_ /+ .n>1

n~(V (10)

where e, > 0 is a constant to be chosen later.

From condition (1) we have -=P(nE~n < and lim E~n=0

Therefore, (3) is equivalent to

lim S */n = 0, a.s. (1
n-

Now fix a > 1 and let k n = [,n]. For positive integer m sufficiently large,

there exists n such that k n< m < k n+11 and n -~as m - .From (1) we have
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sup EIYn I =C < . (12)

Here and in the sequel C is an unimportant constant which is allowed to

change. Since Y n > 0, it follows that

Sm Sn >-(m- k )C, when Sm <5kn'
5m k n(k -m) wen S

Sm-Skn <Sknl-kn+(k nl-),we n.

Hence

k 1  
5lk kn~l kn C.(3

Ism m -Sk /k1 n I- + k C.(3
n n n+l n1 n

From (13) it follows that if we have shown that

lim Sk /kn = 0, a.s. (14)
n-o- n n

Then we would have

lim SUI m < (a -1)C, a.s.

For any a > 1, hence (11).

By Borel-Cantelli lemmna, in order to prove (14), we have only to show

that

*D 2 (5
n~ var(S k )/k n<0.(5

By (6), (8) and (9), we have for any 6 > 0:

k n
Var(Sk I cov(Y.,Y)

kn k~j = 1

k~~(6

C (.xi~ ))/(26) (j~i 2+ E{ ii +6 /(26). (16
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From (1) it follows that

.2+6 (2+6-P)(I/P+€I)
EIYni < Cn n = 1,2,... (17)

First consider the case p > 2. From (2), (16) and (17) we obtain

kn /(2+6) (2+6-p)(l/p+e1)/(2+6)var(Sk ) C Z= (.(Xi,Xjl(2)i)

n i,j=l

kn ( )6/(+6,)i2(2+6-p)(/p+l)/(2+6)

" C I (XiX )) 1 2  'i
i,j=l

"C I i-(2/p+c)6/(2+6)kn2(2+&-P)(l/P+el)/(2+6) (18)
i,j=l i=l

Noticing 2/p < 1, we can assume that 2/p + e < 1. Hence from (18) we have

* -(2/p+c)6/(2+6) +2(2+6-p)(l/p+ 1 )/(2+6) +2var(Sk ) < Ckn . (19)
n

This inequality holds for any 6 > 0. Now we choose el e (0,E/2), then

lim{-(2/p+c)6/(2+6) + 2(2+6-p)(/p+el1 )/(2+6)} = -c + 2el = n < 0.
6-).W

Therefore, choosing 6 sufficiently large, from (19) we obtain

var(Sn ) < Ck2-n  Hence (15) is true in view of O k-n .n - n n=l n

Next assume that p = 2. Again, choose El e (O,c/2). Choose 6 > 0

sufficiently small, such that (I+E)6/(2+6) < 1. We still have (19), with

p = 2. Since

-(l+c)6/(2+6) + 26(1/2+Ei)/(2+6) = -(c -2ci)6/(2+6) < 0,

(15) holds again.

Finally, consider the case 1 < p < 2. In this case we have, instead

of (18),
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k n kn 2(2+6-p)(1/p+E 1 )/(2+6)

kn i-(p/(2p-2)+F)6/(2+6) (20)
n i=1 i~1

Write 60= 2(p/(2p-2)-I +e)- . Since 1 < p < 2, we have a0 > 0. Choose

EA > 0 sufficiently small, such that

0 < 6 < 60 = 2(2+6-p)(l/p+cl)/(2+6) S 1 - n

where n > 0 does not depend on 6, as long as 0 < 6 < 60. Because

(p/(2p-2)+c)61(2+6) < 1 for 0 < 6 < 60 and (p/(2p-2)+e)60/(2+6 O) = 1,

one can find 6 e (0,60), such that

1 - n/2 < (p/(2p-2)+E)6/(2+6) < 1.

For this 6 we have, by (20),

var(S*n) < Ck-(l-n/2) +1+(l-n) +1 < Ck-n/2

k n- n

So we obtain (15) again. Theorem 1 is proved.

Proof of Theorem 2. Part (I): Again we can assume Xn > 0. Write

n= Xn " EXn and Sn = Y From sup EIXn <- we have sup EIYnI <.

Using the same argument employed in proving Theorem 1, we reduce the proof

of (11) to that of (15). From (4), (7) and (9),

c var(S* )/k2 = k kn cov(YiY j)
n=l n n=1 i,j=

k

00 n

nl kn i(li'jl)var(Xi)var(X )I/

0 k n  k n
-" CnI l 

k- 2 1=Z /2 (i)iXIvar(xi (21)

< C kn kvar(Xi)

n=l i =1

" C var(Xn)/n2 < (22)
n= 1

'.
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Part (II) is proved in much the same way as Part (I), only that we
k +k n

replace Ckn for 1inIvar(Xi) and Ckn/(log n)l  for i=v (i) in (21) to

obtain (22). Part (III) is proved by truncating Xn at n and combining the

reasoning above and that of Etemadi [2].

3. AN EXAMPLE

Consider the autoregression model

Xn = a1Xn-i + ... + amXn-m + en,  n = 0,±l,±2 (23)

We want to show that under certain conditions it is true that

n
lim I Xi/n = 0, a.s. (24)
n- i=l

for any solution of (23). Suppose that the following conditions are

satisfied:

1. {en , n = 0,±l,...} is a sequence of independent real random vari-

ables, and

Een = 0, n = O,±l,..., sup Elen Ip = C < - for some p > I. (25)
)~- <n<

where, as before, C is an unimportant constant which is allowed to change.

2. e has a density f satisfying the Lipschitz condition over R':n n .

Ifn(X)-fn(Y)l CIx-yl, n = 0,±l,±2,... (26)

where C does not depend on n.

3. al, a2, ... , am are real constants, and the equation 1 - alz - ... -

a zm = 0 has all its root outside the unit circle.

Under the condition 1 and 3, the general real solution of (23) has

kr - % *%%%*.r~a .. * .... ~ . % *. .- % ~"~ * . -~~
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the form

n m j- 1

X bte + p n (jcos nw+ n sin nwj) = + Xn  (27)
n t=0 - j40 i= 3i 3

where b0 = 1, b2, b3, ... are real constants such that

Ibtl < CHt, t = 0,1,2,... for some H e (0,1). (28)

pj and wj, j l,... ,J, are real constants, 0 < pj < 1, j = 1,,..,J,

m1 + ... + mj = m, and & nj , i = 1,...,m., j = 1,...,J, are arbitrary

random variables. From (25), (27) and (28) it follows that

EX =0 , n = 0, 1, 2,..., sup EIX n p = C < (29)-o<n<,

Let n, N be positive integers, n < N. Define

N-n-i
YnN = t=O bteN-t ,  ZnN = t= _n bteN-t .t-0 tN-ntNt

Since b0 = 1, from (26) it follows that the density gnN of YnN obeys Lipschitz's

condition with the same constant C as in (26). Also

sup{EIYnNIP: 1 <n N<<} = C < -. (30)

Now let q, be a positive constant, q2 = 2ql. Define the event

DnN = {IZnNI > (N-n)- 2 (31)

(25) entails sup Elen = C < -. Hence-0®<n<,o

P(DNn)q2 C(Nn) q2H N-nnN < C Ht_ N- H (32)
t=N-n

Let G be a Borel set in R', h be a constant. G - h is defined as the

N= "-, I
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set {g- h: ge H}. Write G = Gfl{u: I u I<(N-n) },G* = G\G. If jhi < 1,

we have

'P(Y nN e G) -P(Y nNe G-h

.~IP(Y N eG) - P(Y nNe G -h) I+ P(Y nN eG*) +P(Y nN eG-h)

-L JfIlfN(u) - gflN(u - h) Idu + P( IYnN I > (N - n) q,) + POlY > (N - n) q

< C(N -n) qh + C(N-n) 1q + CE(N-n) q1]

.C(N -n) h + C(N- n) (33)

Now let A and B be two Borel sets in R'. We proceed to estimate

P(X ne A, X N eB) - P(X n e A)P(X Ne B)I. From (32), (33) and the independence

of el, e 2, ... ,I we have

P(x nni~**)nPe nelje ,e nN e~ IP(Y N eB -Z N IZnN) -P(YnN EB

< C(N-n) -(q 2-ql) +C(N-n) q

.: C(N-n) ,l (34)

when D nNdoes not occur. But

IP(X N eB) -P(Y N eB)I= IP(Y nNe B -Z )- P(Y eBI

NN fl eeB)I

< ~ P(D ) + MPY e B -Z DC ) -P(YN eB) I + P(DN

-P( nN) (-)q < C(N-n) q2H N- + C(N-n)-q

<C(N-n) (35)
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From (34) and (35) we get

when D nN does not occur. if P(X ne B) I C(N-n) then from (33) and (35)

we obtain

P( ne , Ne ) r PX eB CN-n -q][P(xn e A) -C(N-n) q2H N-n1  (36)

Also

P(X n eA, X N eB) < [P( N e B) +C(N-n) 1 [P(-Xn e A) +C(N-n) H n1  (37)

From (36) and (37) we have

IP(i neA, N e )-PineAPiNe B) I C(-)q + C(N-n)q2 H N-

+C(N-n) qH Nn< C(N-n)- q (38)

where C does not depend on A, B. (38) is proved when P(i eB) I C(N-n)ql

if P(X NeB) <C(N-n) ,(38) is trivially true. Therefore we get

Now choose q, = p/(2p-2) + 2. From (39) we see that the condition (2) is

satisfied. This, together with (29), gives, by Theorem 1,

n
lrn R ./n = 0, a.s. (40)
n-*i'-

From the expression of Xn it is readily seen that

n

lim X X. /n = 0, a.s. (41)
n-4- i1-

From (27), (40) and (41), we obtain (24).



The conclusion (40) does not follow from the ergodic theorem of station-

ary process, since {en) is not assumed to be identically distributed, so

{X n may not be a strictly stationary process.
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